Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(2): e0031321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523989

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has brought about the unprecedented expansion of highly sensitive molecular diagnostics as a primary infection control strategy. At the same time, many laboratories have shifted focus to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research and diagnostic development, leading to large-scale production of SARS-CoV-2 nucleic acids that can interfere with these tests. We have identified multiple instances, in independent laboratories, in which nucleic acids generated in research settings are suspected to have caused researchers to test positive for SARS-CoV-2 in surveillance testing. In some cases, the affected individuals did not work directly with these nucleic acids but were exposed via a contaminated surface or object. Though researchers have long been vigilant of DNA contaminants, the transfer of these contaminants to SARS-CoV-2 testing samples can result in anomalous test results. The impact of these incidents stretches into the public sphere, placing additional burdens on public health resources, placing affected researchers and their contacts in isolation and quarantine, removing them from the testing pool for 3 months, and carrying the potential to trigger shutdowns of classrooms and workplaces. We report our observations as a call for increased stewardship over nucleic acids with the potential to impact both the use and development of diagnostics. IMPORTANCE To meet the challenges imposed by the COVID-19 pandemic, research laboratories shifted their focus and clinical diagnostic laboratories developed and utilized new assays. Nucleic acid-based testing became widespread and, for the first time, was used as a prophylactic measure. We report 15 cases of researchers at two institutes testing positive for SARS-CoV-2 on routine surveillance tests, in the absence of any symptoms or transmission. These researchers were likely contaminated with nonhazardous nucleic acids generated in the laboratory in the course of developing new SARS-CoV-2 diagnostics. These contaminating nucleic acids were persistent and widespread throughout the laboratory. We report these findings as a cautionary tale to those working with nucleic acids used in diagnostic testing and as a call for careful stewardship of diagnostically relevant molecules. Our conclusions are especially relevant as at-home COVID-19 testing gains traction in the marketplace and these amplicons may impact on the general public.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Contaminação por DNA , DNA Viral/genética , SARS-CoV-2/genética , Reações Falso-Positivas , Humanos , Técnicas de Diagnóstico Molecular , RNA Viral/genética , SARS-CoV-2/isolamento & purificação
3.
Biotechnol Bioeng ; 116(1): 65-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199096

RESUMO

A new disposable, multiphase, microbioreactor (MBR; with a working volume of 550 µl) equipped with online sensors is presented for biotechnological screening research purposes owing to its high-throughput potential. Its design and fabrication, online sensor integration, and operation are described. During aerobic cultivation, sufficient oxygen supply is the most important factor that influences growth and product formation. The MBR is a microbubble column bioreactor (µBC), and the oxygen supply was realized by active pneumatic bubble aeration, ensuring sufficient volumetric liquid-phase mass transfer (k L a) and proper homogenization of the cultivation broth. The µBC was equipped with miniaturized sensors for the pH, dissolved oxygen, optical density and glucose concentration that allowed real-time online monitoring of these process variables during cultivation. The challenge addressed here was the integration of sensors in the limited available space. The MBR was shown to be a suitable screening platform for the cultivation of biological systems. Batch cultivations of Saccharomyces cerevisiae were performed to observe the variation in the process variables over time and to show the robustness and operability of all the online sensors in the MBR.


Assuntos
Produtos Biológicos/metabolismo , Reatores Biológicos/microbiologia , Biotecnologia/métodos , Programas de Rastreamento/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Aerobiose , Meios de Cultura/química , Glucose/análise , Concentração de Íons de Hidrogênio , Oxigênio/análise , Espectrofotometria
4.
J Chromatogr A ; 1576: 26-33, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30253912

RESUMO

This work shows the development of a molecularly imprinted polymer to determine folic acid (FA) in food extracts by using dispersive solid-phase extraction and liquid chromatography coupled to mass spectrometry (LC-MS). Herewith, combinations of monomers (methacrylic acid (MAA), 4-vinylpyridine (4VPy) and vinylbenzyl trimethylammonium chloride (VBTMAC)) and crosslinkers (ethylene glycol dimethacrylate (EGDMA) and divinyl benzene (DVB)) were tested in appropriate solvents. Isotherm tests revealed that the MIP with the highest affinity was obtained by combining VBTMAC and EGDMA. Having checked the appropriate template-monomer-crosslinker ratio, the FA MIP was analyzed for its kinetic and equilibrium binding properties, proving very high affinity (more than 2.5 mmol g-1) and MIP/NIP ratio (up to 37). The FA MIP was used to selectively isolate the compound of interest from lettuce and cookies matrices using a dispersive solid-phase extraction protocol (which exhibited appropriate recovery and repeatability, ≥79.50% and ≤13.41 (%RSD in terms of area values), respectively, as well as absence of matrix effect); the resulting extracts were analyzed by a rapid and reliable LC-MS method.


Assuntos
Cromatografia Líquida , Ácido Fólico/química , Análise de Alimentos/métodos , Polímeros/síntese química , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Lactuca/química , Metacrilatos/química , Impressão Molecular , Solventes/química
5.
N Biotechnol ; 47: 8-17, 2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-29522860

RESUMO

The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses. This platform is compatible with different sensor formats by enabling their replacement and was built in order to be highly flexible and thus suitable for a wide range of applications. Moreover, this re-usable platform can easily be connected to analytical equipment, such as HPLC, laboratory scale reactors or other microfluidic chips through the use of standardized fittings. In addition, the developed platform includes a two-sensor system interspersed with a mixing channel, which allows the detection of samples that might be outside the first sensor's range of detection, through dilution of the sample solution up to 10 times. In order to highlight the features of the proposed platform, inline monitoring of glucose levels is presented and discussed. Glucose was chosen due to its importance in biotechnology as a relevant substrate. The platform demonstrated continuous measurement of substrate solutions for up to 12 h. Furthermore, the influence of the fluid velocity on substrate diffusion was observed, indicating the need for in-flow calibration to achieve a good quantitative output.


Assuntos
Técnicas Biossensoriais/métodos , Microfluídica/métodos , Fermentação , Glucose/análise , Grafite/química , Hidrodinâmica , Reologia , Soluções
6.
J Hazard Mater ; 306: 50-57, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26686524

RESUMO

Industrial water contains a number of contaminants, such as organic pollutants and heavy metals, which can significantly affect the quality of soil, ground and environmental waters. We have successfully optimized and tested an electrochemical method and sensor modified with dimethylglyoxime for monitoring of nickel(II). The detection limit was 0.03mg/L and determination limit was 0.09mg/L. Linear concentration range was observed from 0.06 to 0.5mg/L Ni(II) and it is suitable for the analysis of environmental waters. The effect of all parameters important for on-site measurements (such as interferences, presence of dissolved oxygen, temperature) was investigated and considered in the analysis of mine discharge water. Water samples were analyzed without any pretreatment or filtration. A low level of error (5.6%) was observed for analysis demonstrating the usability of the optimized sensor and method for on-site measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...